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We use a relatively simple continuum model to investigate the effects of dielectric inhomogeneity within
confined liquid-crystal cells. Specifically, we consider, in planar, cylindrical, and spherical geometries, the
stability of a nematic-isotropic interface subject to an applied voltage when the nematic liquid crystal has a
positive dielectric anisotropy. Depending on the magnitude of this voltage, the temperature, and the geometry
of the cell, the nematic region may shrink until the material is completely isotropic within the cell, grow until
the nematic phase fills the cell, or, in certain geometries, coexist with the isotropic phase. For planar geometry,
no coexistence is found, but we are able to give analytical expressions for the critical voltage for an electric-
field-induced phase transition as well as the critical wetting layer thickness for arbitrary applied voltage. In
cells with cylindrical and spherical geometries, however, locally stable nematic-isotropic coexistence is pre-
dicted, the thickness of the nematic region being controllable by alteration of the applied voltage.
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I. INTRODUCTION

The nematic-isotropic �N-I� phase transition is weakly
first order, and so there exists a narrow temperature range
over which the N and I phases coexist. In practice, however,
for most systems the weakness of the N-I surface tension and
the small enthalpy of the transition render experimental sta-
bilization of N-I coexistence a considerable challenge. Thus,
most direct observations of the N-I interface have relied on
the imposition of a temperature gradient �1–3�.

The conditions for N-I coexistence can also be influenced
by the presence of disclinations, substrates, or impurities,
since such inhomogeneities can seed regions of one symme-
try at state points for which the other is stable in three-
dimensional bulk. For example, order parameter variation at
planar substrates has been observed in numerous experimen-
tal systems �4�. Indeed, there are a few cases where, by sand-
wiching a liquid crystal between substrates preferentially
wet, respectively, by N and I phases and imposing precise
temperature control, thermally equilibrated N-I interfaces
have been obtained �5,6�. There are also numerous con-
tinuum and density functional treatments of liquid crystals
adsorbed at substrates which show either partial or complete
wetting by an I �N� film in the presence of a N �I� bulk �7,8�.
Correspondingly, substrate-induced order parameter varia-
tion is a common finding in computer simulation studies of
confined and adsorbed liquid crystals �9,10�, leading to ob-
servation of phenomena such as capillary nematization and
criticality of the bulk N-I transition �11,12�.

A number of authors have also investigated the combined
effects of applied bulk and surface fields on the N-I transition
and wetting film growth �13,14� although few analytical re-
sults have been reported. An applied orienting field can in-
fluence both surface and bulk order and may induce a tran-
sition to the N phase even when the I phase is the global
minimiser of the bulk thermotropic energy. In practice, how-

ever, orienting fields are not applied directly; rather, they
develop due to voltages applied across the dielectric liquid
crystal contained in the device. As such, spatial inhomoge-
neity in the electric field �reflecting any dielectric inhomoge-
neity� is perfectly possible and certainly must occur in situ-
ations involving, e.g., an isotropic liquid crystal confined
between substrates which induce significant orientational or-
der in the interfacial regions. This situation is complicated
even further in cells with very-high-resolution electrode pat-
terns, where these inhomogeneities are two dimensional �15�.

In this paper we use a relatively simple continuum model
to investigate the effect of dielectric inhomogeneity on the
phase behavior of a liquid crystal subject to an applied volt-
age. In particular, we examine the possibility of using an
applied voltage to control the relative thicknesses of N and I
domains by exploiting the dielectric differences between the
two phases. We note that there is an analogy �16� to be drawn
here with the shear-induced banding induced in colloidal
liquid-crystalline systems �17�. In these experiments, the sys-
tem separates into N and I bands rather than adopting a con-
tinuous stress field across the entire shear cell �18�. Unlike
these colloidal systems, however, the N-I interface in a
single-component molecular system is characterized by a
very small amplitude density step. Thus, unusually, the sig-
nificant dielectric discontinuity seen at this interface has a
very small associated compositional change. Consequently,
formation of this particular phase boundary does not require
substantial material transport.

The remainder of this paper is structured as follows. In
the next two sections, we present the three geometries con-
sidered and detail, for each setup, the relevant contributions
to the free energy of the system. In the subsequent section we
give the resultant analysis for a planar-geometry cell. Fol-
lowing a description of the results obtained for this planar
system, we then determine the corresponding results for sys-
tems with cylindrical and spherical geometries. Finally, the
implications of these results are discussed.

II. GEOMETRIES

We consider liquid-crystal systems with three different
geometries: planar, cylindrical, and spherical. In all three ge-
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ometries we consider mesogenic material to be sandwiched
between two substrates and hypothesize that, in the absence
of an applied field, substrate-induced regions of N and I
phases reside within this sandwich.

In the planar geometry the liquid-crystal material is sand-
wiched between two flat parallel substrates �see Fig. 1�a��,
one of which favors homeotropic alignment. It is assumed
that a region with N order is induced at one of the substrates
due to partial or complete wetting �7�. As will be discussed
later, it may not be necessary to assume such a layer preex-
ists since an applied voltage may induce such a layer, al-
though we will in general consider the evolution of such a
layer of nematic as temperature and voltage are varied. It is
further assumed that electrodes are deposited on the inner
surfaces of the substrates so that an electric field may be
applied in the direction parallel to the substrate normal, the z
direction. The substrates are a distance d apart, and the N
material occupies a region of thickness d*, while the I phase
fills the rest of the cell.

In the cylindrical and spherical geometries �see Figs. 1�b�
and 1�c�� the liquid-crystal material fills the region between
two concentric cylindrical or spherical shells, respectively.
Here, electrodes are deposited on the inner face of the outer
cylinder �sphere� and the outer face of the inner cylinder
�sphere�. Any applied electric field, therefore, points in the
radial direction. The radii of the inner and outer cylinders
�spheres� are R and R+d and the nematic region, between
r=R and r=R+d*, is taken to be adjacent to the inner cylin-
der �sphere�.

III. FREE ENERGY

Our main concern in what follows is the effect of an ap-
plied voltage on the total thickness of the N region. Specifi-
cally, we consider whether the dielectric discontinuity asso-
ciated with an N-I interface can be used to generate field-
controllable domain thicknesses. To simplify the description
of this system, we first assume that the nematic order param-
eter S is constant within each phase region and that the in-
terfaces between the N and I regions have a finite and con-
stant surface tension.

With the substrate adjacent to the N region inducing ho-
meotropic alignment, the electric field assumed to be aligned
with the z axis �in the planar case� or the local r axis �in the
cylindrical and spherical cases�, and the liquid crystal chosen
to have a positive dielectric anisotropy, the director within
the N layer can be taken to lie along the z axis �planar� or the
radial direction �cylindrical, spherical�. However, the electric
field also induces an increase in order within both the N and

I regions. In fact the I region becomes paranematic—that is,
a state with nematic symmetry about the field axis but with a
low order parameter. If we assume that the system remains
uniaxial �a valid assumption since the homeotropically
aligned surfaces do not induce biaxiality and, in this system,
the dielectric effect of the field will tend to increase uniaxial
order and reduce any biaxiality present�, the liquid-
crystalline order can be described by the symmetric traceless
tensor

Q = S�n � n − I/3� , �1�

where I is the identity tensor. The product n � n produces the
3�3 matrix with ijth entry equal to ninj, the product of the
ith and jth components of the director. The total free energy
of the system, F, can then be expressed as the sum of a
thermotropic energy contribution Ft, which describes the
preference for the material to be in the N or I phase; an
elastic distortion energy Fd; an electrostatic energy contribu-
tion Fe, which will be different in the paranematic and N
regions due to the different permittivities of the phases; and
an interfacial energy Fi for the N-I interface.

In the planar-geometry case there will be no distortion of
the director and the interfacial area will be unchanged as the
N region changes size. Therefore, in the planar case, the
elastic contribution to the free energy will be zero and the
interfacial contribution will be constant �with respect to
changes in d*�.

In general, the free energy is

F = Ft + Fd + Fe + Fi = �
vol

�Ft + Fd + Fe�dv + �
A

Fids ,

�2�

where, to recap, vol is the volume occupied by the combined
N and I regions, A is the area of the N-I interface, and F
denotes the appropriate free energy density contributions.
Clearly, F is dependent on the order parameters within both
the paranematic and N layers, SI and SN, respectively, and the
total thickness of the N layer, d*. Minimizing F with respect
to these three variables, therefore, offers a route to determin-
ing the equilibrium states for these systems.

The minimization of the free energy can be performed
using the standard equilibrium equations derived from the
free energy:

�F

�SI
= 0,

�F

�SN
= 0,

�F

�d* = 0. �3�

However, in order to elucidate the behavior of a layer of
nematic phase in the system as it evolves to its equilibrium

FIG. 1. Cell geometry: The
liquid-crystalline material is sand-
wiched between two planar, cylin-
drical, or spherical substrates a
distance d apart. The nematic
layer, of thickness d*, is taken to
occur close to the homeotropically
anchored substrate.
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position we take a slightly different approach. The free en-
ergy depends on three variables: the order parameter in the
paranematic layer, SI; the order parameter in the nematic
layer, SN; and the thickness of the nematic layer, d*. The
energy surface F�SI ,SN ,d*� is hard to visualize graphically,
and we will instead plot the free energy only as a function of
d* along the line of steepest descent. We do this by the fol-
lowing procedure. We first solve the SI and SN equilibrium
equations simultaneously, either analytically in terms of d* or
numerically by specifying values of d*. The solutions for SI
and SN, in terms of d*, are then used to find the energy of that
state from the free energy expression. At this point we also
check that the solution for SI and SN, for each value of d*, is
a local minimum of the energy by ensuring that the Hessian
matrix

H =�
�2F

�SI
2

�2F

�SN�SI

�2F

�SI�SN

�2F

�SN
2
� �4�

is positive definite. In fact in all cases considered below the
solutions of the equilibrium equations �3a� and �3b� lead to
minima with respect to SI and SN. Therefore, a minimum
with respect to d* will correspond to a local minimum in the
free energy while a maximum with respect to d* will corre-
spond to a saddle point.

This approach then gives us the free energy in terms of d*,
either analytically or as a set of numerical free energy values
for the set of numerical values of d*. This enables us to plot
F�d*�, and since for each value d* this is the local minimum
energy with respect to SI and SN, it indicates the line of
steepest descent on the free energy surface F�SI ,SN ,d*� pro-
jected onto the F-d* plane. We can therefore be sure that any
minimum in the F�d*� plot will represent a local minimum of
the free energy. It is impossible to state that this is the global
minimizer of the free energy since there will be many pos-
sible configurations of the system �e.g., multiple N / I layers
within the region of different order parameters� but we can
check that any such minimum in F�d*� has an energy lower
than obvious alternative possibilities such as a completely
isotropic region of a completely nematic region. These plots
of F�d*� will then enable us to gain a qualitative insight into
how the system will attempt to attain its minimum energy by
altering the nematic layer thickness d*.

It should also be mentioned that in this work we have
assumed that no substrate energy terms enter the free energy
expression. This is a simplification of the model, and a fuller
model would include such terms. However, such an addition
will not change the results qualitatively, and as we will dis-
cuss later, in some cases, the presence of a substrate which
favors the nematic phase is not necessary to induce a nematic
layer.

A. Thermotropic energy

Following the classic Landau–de Gennes treatment �13�,
the thermotropic energy density of the nematic is approxi-
mated using a truncated Taylor expansion in the tensor order
parameter,

Ft = F0 +
a

2
tr�Q2� +

b

3
tr�Q3� +

c

4
�tr�Q2��2, �5�

where F0 is the energy density of the I phase and tr denotes
the trace operator. In principle, the coefficients a, b, and c
can all be temperature dependent, although it is usual to as-
sume that a=��T−T*� is linear in temperature T, while �, b,
and c are all constants. In this expression, T* is the super-
cooling limit, the temperature at which the I phase becomes
unstable.

Using the uniaxial expression for Q given in Eq. �1� the
thermotropic energy then becomes

Ft = F0 +
�

3
�T − T*�S2 +

2b

27
S3 +

c

9
S4 = F0 + ��S� , �6�

where the shorthand notation ��S� will be used in later
sections. The constant F0 will not enter the energy
minimization and will therefore be neglected in future
expressions. There are, at most, three extrema of this
thermotropic energy expression, the I phase S=0 and
two N states S+= �−b+�b2−24�c�T−T*�� /4c and S−

= �−b−�b2−24�c�T−T*�� /4c �one at least locally stable and
one unstable�. There are also three significant temperatures:
the temperature at which the I phase ceases to be metastable,
the supercooling limit T*; the temperature at which the en-
ergy density of the I phase S=0 and the energy density of the
N phase S=S+ are equal, the clearing point, given by
TNI=T*+b2 /27ac; and the temperature above which the N
phase ceases to be metastable, the superheating limit given
by T+=T*+b2 /24ac. Within the temperature range T�T+

the state S=S+ is the relevant �at least locally� stable
N state. With parameter values �=1.5�105 J m−3 K−1,
b=−2.25�106 J m−3, and c=4.5�106 J m−3 the superheat-
ing and clearing points are T+=T*+0.3125 K and
TNI=T*+0.2778 K. The values for �, b, and c used here are
generic values of the same order of magnitude as the rela-
tively few sets of data found in the literature �e.g., �19��.
Altering these values to those measured for a specific mate-
rial would not change the subsequent results qualitatively.

B. Electrostatic energy

Assuming an absence of permanent dipoles or free
charges, the electrostatic energy within a dielectric material
is the sum of the background electrostatic energy which
would be present in vacuum and the extra energy derived
from the dipoles which are induced when a voltage is applied
across the cell. The electrostatic free energy is therefore a
function of the permittivity of the dielectric material and is
expressed by

Fe = −� D · dE = −
1

2
�0�� · E� · E , �7�

where E is the electric field, D=�0�E is the displacement
field, �0 is the permittivity of free space, and � is the dielec-
tric permittivity tensor.

Using Maxwell’s equations, in the planar, cylindrical, and
spherical cases, for a charge-free system it is then relatively
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straightforward to show that the electric field in the substrate
normal direction is

Ez�z� =
1

�0�zz�z�� − V

�
0

d 1

�0�zz�z�
dz� �8�

for the planar case,

Er�r� =
1

�0�rr�r�
1

r� − V

�
R

R+d 1

�0�rr�r�
1

r
dr� �9�

for the cylindrical case, and

Er�r� =
1

�0�rr�r�
1

r2� − V

�
R

R+d 1

�0�rr�r�
1

r2dr� �10�

for the spherical case. Here V is the potential difference be-
tween the two substrates �with the higher voltage applied at
the upper and outer surfaces� and �zz�z� and �rr�r� are the zz
and rr components of the dielectric tensor which may change
through the cell.

Writing the dielectric tensor as �19�

� = �̄I + ��*Q , �11�

and assuming uniaxiality throughout the cell, Eq. �1� with
n=ez or n=er, depending on the geometry, then leads to

�zz or �rr = �̄ +
2��*S

3
, �12�

where �̄= ��	 +2��� /3 is the permittivity of the I phase and
��*= ��	 −��� /Sexpt is the dielectric anisotropy, which is as-
sumed to be positive, scaled by the order parameter at which
the experimentally determined permittivity values were
taken, Sexpt. Denoting the order parameter in the N phase as
SN and that in the I/paranematic phase as SI then gives,
in the respective phase regions, �N= �̄+2��*SN /3 and
�I= �̄+2��*SI /3.

In the three geometries we consider here, there are N and
paranematic regions, with fixed permittivity tensors �N and
�I, respectively. Because of the simplicity of the geometries
considered, the free energy densities, Eq. �7�, may then be
written as

Fe = −
1

2
�0�zzEz

2 or −
1

2
�0�rrEr

2 �13�

for the planar and nonplanar geometries, respectively. The
forms of Ez, Er, �zz, and �rr are then given by Eqs. �8�–�10�
and Eq. �12� so that the integrals needed to calculate the
electrostatic energy in the different regions can be evaluated
analytically.

C. Elastic energy

The elastic energy of the material is defined in both the N
and paranematic region but a true I phase will not support

equilibrium elastic distortion. We use the standard expression
for elastic energy as a function of the Q tensor for an achiral
nematic material �19�:

Fd =
L11

2

�Qij

�xk

�Qij

�xk
+

L22

2

�Qij

�xj

�Qik

�xk
+

L33

2

�Qik

�xj

�Qij

�xk
, �14�

where the Lii are elastic constants and summation over re-
peated indices is assumed. This relatively simple expression
assumes that the splay and bend elastic constants �the Frank
constants K11 and K33� of the liquid crystal are equal. Higher-
order terms could be used to distinguish between these elas-
tic distortions but in our system only splay distortions will be
present and therefore only the constant L11 occurs in the free
energy.

For the planar case, when n=ez there is no distortion and
the elastic-energy density is zero. However, for the cylindri-
cal and spherical cases the director exhibits a splayed struc-
ture n=er and the elastic energy density, Eq. �14�, becomes

Fd =
L11S

2

2

1

r2 �15�

and

Fd = 2L11S
2 1

r2 , �16�

respectively. The elastic energy, in the cylindrical and spheri-
cal geometries, can therefore be calculated by integrating Eq.
�15� or �16�, respectively, over the nematic �where S=SN�
and paranematic �where S=SI� regions.

D. Interfacial energy

The interfacial energy density can be approximated if we
consider a phase boundary profile of the form �20�

S =
SN + SI

2
+

SN − SI

2
tanh
 x

w
� , �17�

where w is the width of the phase boundary and the distor-
tion energy density of the form ��S�2. The interfacial energy
density is then proportional to the square of the difference
between the order parameters in the N and paranematic re-
gions,

Fi = ��SN − SI�2, �18�

and therefore the interfacial energy is simply

Fi = �A�SN − SI�2, �19�

where A is the area of the interface and � is a surface tension
parameter for the N-paranematic interface. In the planar ge-
ometry the interfacial area is simply A= lxly, the area of the
cell. In the cylindrical case A=2��R+d*�lz where lz is the
extent of the cylinder in the z direction. In the spherical case
the interface area is A=4��R+d*�2.

For each of the geometries considered below we have also
calculated the free energy of a completely isotropic or a com-
pletely nematic layer in order to compare to states which
include an interface. For the completely isotropic or nematic
states the interfacial energy is ignored.
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IV. PLANAR GEOMETRY

In the planar geometry shown in Fig. 1�a� the electric field
expression in Eq. �8� may be evaluated analytically by set-
ting �zz=�N in 0�z�d* and �zz=�I in d*�z�d. The electric
fields within the N and I regions then become

Fe
N = −

�0�I

2

V2�I�N

�d*��I − �N� + d�N�2 ,

Fe
I = −

�0�N

2

V2�I�N

�d*��I − �N� + d�N�2 . �20�

Splitting the free energy in Eq. �2� into the N and I regions
and using the free energy densities in Eqs. �6�, �20�, and �18�
then gives

F = lxly
�
0

d*

��SN� −
�0�I

2

V2�I�N

�d*��I − �N� + d�N�2dz + �
d*

d

��SI�

−
�0�N

2

V2�I�N

�d*��I − �N� + d�N�2dz + ��SN − SI�2� , �21�

where lx and ly are the extents of cell in the x and y direc-
tions. Upon integration, Eq. �21� leads to

F/�lxly� = �d*
„��SN� − ��SI�… + d��SI�� −

1

2

�0�I�NV2

d*��I − �N� + d�N

+ ��SN − SI�2. �22�

This energy has a singularity at d*=d�N / ��N−�I�, but since it
has been assumed that the material has a positive dielectric
anisotropy, we have 0��I��N so that the singularity occurs
for the nonphysical region d*	d. With the applied voltage
set to zero, this free energy is linear in d* and thus minimi-
zation with respect to d* leads to the results d*=0 �i.e.,
no N region� if ��SN�	��SI� and d*=d �i.e., a fully N cell�
if ��SN����SI�. In this case, where V=0, minimization of
the free energy with respect to SI and SN can also be
carried out. When �=0 the solutions are simply SI=0 and
SN=S+. With a realistic value, �=1.0�10−5 N m−1, these so-
lution change very little since the effect of the interfacial
energy is small compared to the thermotropic energy
�because �
d���T−T*��.

When a voltage is applied to the cell, however, the mini-
mization becomes more complicated due to the dependence
of �I and �N on SI and SN. Very little analytical progress can
be made with the full description of this situation, and the
free energy must be minimized numerically �see below�.
However, if we assume that the applied voltage does not
significantly alter the order parameter in either region, then
an approximate analytical solution may be found. Assuming
that the dielectric contribution to the energy is small com-
pared to the thermotropic contribution is equivalent to hav-
ing

�0�̄V2

d

 d� , �23�

where � is of the same order as the thermotropic
Landau–de Gennes coefficients a, b, and c. Since

�0=8.854�10−12 F m−1 and, typically, d�10−5 m,
��106 J m−3, and �̄�101, this is equivalent to V
103 V
which is well above the voltages applied in typical devices.
We can, therefore, be relatively confident in using
��0�̄V2� / �d2��=� as a small parameter. A perturbation analy-
sis can then be carried out using the assumption that, when
�
1, the N and paranematic order parameters can be ap-
proximated by expansion series about the values SN=S+ and
SI=0,

SN = S+ + �SN1 + O��2� , �24�

SI = �SI1 + O��2� . �25�

Solutions for SN1 and SI1, as well as higher-order terms in the
expansions, can readily be found analytically, although these
expressions are lengthy and are not presented here. Using the
resulting approximations from Eqs. �24� and �25�, substituted
into the total energy, we then obtain the free energy as a
function of d* only which is, as explained above, the line of
steepest descent on the energy surface F�SI ,SN ,d*�, projected
onto the F-d* plane.

To illustrate the predictions of this approach, we show, in
Fig. 2, plots of the free energy as a function of domain
size d* for various voltages but for a fixed temperature
T=T*+0.28 K, which is between T+=T*+0.3125 K and
TNI=T*+0.2778 K, so that the N phase is metastable.
Other parameter values are �=1.5�105 J m−3 K−1,
b=−2.25�106 J m−3, c=4.5�106 J m−3, ��=4.2, �	 =9.6,
Sexpt=0.6 �so that ��*=9 and �̄=6�, �0=8.854
�10−12 F m−1, �=1.0�10−5 N m−1, and d=1.0�10−5 m.
The shaded area, where d*�0 or d*	d, is outside the range
of physically achievable domain sizes and so can be disre-
garded.

Figure 2 shows the energy plot resulting from a numerical
minimization of the full free energy expression �22� with
respect to SI and SN �which, as described above, only ensures
that there exists a local minimum�, as well as the analytical
results obtained using both the perturbation solution �based
on the expansions �24� and �25�� and the most basic free
energy expression which assumes SI=0 and SN=S+. We note
that it is not possible to differentiate between these three sets
of plots, the percentage difference between the numerical
solution and the approximate solutions being at most 0.05%.
This means that not only is the perturbation expansion solu-
tion an excellent approximation to the numerical solution,
but even the crude simplification SI=0, SN=S+ is also ex-
tremely accurate.

With the simplification SI=0, SN=S+ we may go further
analytically. By differentiating the free energy equation �22�
with respect to d* we find that there are stationary points of
the energy at

dmax
* =

d�N

��N − �I�
− V� �0�N�I

2��N − �I���S+�
, �26�
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dmin
* =

d�N

��N − �I�
+ V� �0�N�I

2��N − �I���S+�
, �27�

where, as indicated by the subscripts, it is possible to show

�by considering d2F̄ /d�d*�2� that dmax
* is a maximum �with

respect to variations in d*� of the energy and dmin
* is a mini-

mum �with respect to variations in d*� of the energy. As
mentioned above, the maximum with respect to d* corre-
sponds to a saddle point of the free energy. However, these
maximum and minimum points only exist when
��S+�	0—that is, when T	TNI. For physical significance,
it is also necessary for the nematic phase to exist at least as a
metastable state and, therefore, we must also have T�T+.
From Eqs. �26� and �27� we can also see that, since �N	�I,
we obtain dmin

* 	d and, thus, the locally stable equilibrium
case is never physically relevant for this system geometry.
The value of d* corresponding to an energy maximum, given
by Eq. �26�, is physically relevant in some cases; these val-
ues are indicated by the open circles in Fig. 2. From these,
we see that, for cases with a total N domain width smaller
than dmax

* , the N domains will shrink to leave the cell filled
with the I fluid whereas when the total N domain width is
larger than dmax

* the N domain will grow and fill the cell.
The maximum point lies within the cell—that is,

0�d*�d—when

Vmin = d� 2�I��S+�
�0�N��N − �I�

� V � d� 2�N��S+�
�0�I��N − �I�

= Vmax.

�28�

Therefore, for any fixed temperature between TNI and T+,
there exists a minimum voltage such that for V�Vmin, even a
substrate-induced domain of size d*=d �the full cell filled
with N� will not be able to maintain the cell in the N phase.
The energy curve in Fig. 2 with V=7.5 V is such a situation
where an N domain of any size will shrink to leave an I cell.
There is also a corresponding maximum voltage Vmax above
which a surface domain of size d*=0 will be unstable with
respect to the full phase transition of the cell from I to N. In
such cases, N order will develop at all points in the cell and,
therefore, the transition from N to I will be homogeneous
and not domain driven. In other words, any applied voltage
V	Vmax will lead to a homogeneous I-N transition.

The behavior of this field-induced seeding is summarized
in the phase diagram in Fig. 3. For temperatures between TNI
and T+ no field-induced I-N transition is possible for voltages
V�Vmin. At fixed T in this temperature range, however,
a field-induced transition to the N phase, through
domain growth, will be possible for voltages in the range
Vmin�V�Vmax. The precise value of V needed to induce this
domain-growth process will depend on the inherent domain
size in the system. Thus, for substrates which are completely
wetted by a N film �leading to large d*�, a voltage close to
Vmin will suffice, whereas partially wet substrates will require
VVmax. This raises an intriguing prospect for patterned sur-
faces, that this domain growth will directly project the de-
gree of surface-induced order into the state adopted across
the entire cell width. For applied voltages greater than
Vmax�T� a homogeneous transition occurs in this temperature

FIG. 2. Planar geometry: the total free energy as a function of
domain size d* for voltages V=7.5 V, Vmin=7.735, 8.0, 8.25, 8.5,
8.75 V, and Vmax=9.014 and 9.25 V. As indicated by the arrows,
for domain sizes less than the critical size �denoted by a circle for
each voltage� where the maximum energy occurs, the system energy
is reduced by shrinking the domain size to zero. For domains of size
greater than the critical size, the system energy is reduced by grow-
ing the domain size to fill the cell. Three plots are shown for each
parameter set �numerical solution of full problem and two analytical
solutions to perturbation expansions—see text for details� but they
cannot be resolved on the scale of this figure.

FIG. 3. The voltage-temperature phase diagram for the planar
geometry: there exists a region, between the curves Vmin and Vmax,
where the stable state can be either fully nematic or fully isotropic,
depending on the width of the nematic domain present in the sys-
tem. The critical size of the domain necessary to induce the domain-
induced transition to a fully nematic cell depends on both T and V.
For instance, along the dashed line a nematic domain thickness
corresponding to half of the cell width is necessary to induce a fully
nematic state.
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region. For temperatures greater than T+ the N phase is not a
stable state and, therefore, the field-induced transition is not
possible, although the orienting effect of the applied field
will induce some paranematic order within the fluid.

V. NONPLANAR GEOMETRIES

In the analysis presented in the previous section, the sub-
strates confining the liquid crystal were taken to be planar
and parallel. In this geometry, it was found that the global
minimum of the free energy always corresponds to either a
fully N or a fully I cell. For certain narrow ranges of voltage
and temperature, however, the state adopted by the system
was found to be controlled, in part, by the extent of any
substrate-induced ordered domain. Indeed, for temperatures
between TNI and T+, it was shown that discontinuous switch-
ing from fully N to fully I states could be induced by simply
changing the applied voltage �see Fig. 3� but no locally
stable equilibrium states were found involving an N-I inter-
face.

As we shall now show, however, equivalent analysis per-
formed for cells with a nonplanar geometry does predict ar-
rangements corresponding to field-stabilized N-I coexistence
over the limited temperature range TNI�T�T+. Specifically,
we show that for cylindrical and spherical cells it is possible
to find a range of cell dimensions and voltages for which the
global free energy is minimized �at least locally� by a state
which includes a N-I interface. This effect occurs because, in
these geometries, the electric field cannot be uniform
throughout space; hence, in some situations, the global free
energy may be minimized if the region of the cell with the
stronger electric field is N while the remainder of the cell
remains I.

In a nonplanar geometry there is a nonzero contribution to
the free energy from distortions in the director field and the
free energy of the N-I interface is also dependent upon the
position of the interface. Despite these additional effects and
subject to the assumption that it is valid to ignore any change
in the order parameter due to the splay deformation, it is
found that for typical values of the material parameters, a
field-banded arrangement with a N-I interface can be the
locally stable state.

A. Cylindrical case

If we consider a system with cylindrical geometry, with
an inner cylinder of radius R and a concentric outer cylinder
of radius R+d �see Fig. 1�b��, we may follow similar argu-
ments to those in the previous section to show that the con-
tributions to the free energy contributions are given by

Ft/lz = ����SI��d − d*��d + d* + 2R� + ��SN�d*�d* + 2R�� ,

Fe/lz =
�V2�0�N�I

�I�ln�R� − ln�d* + R�� + �N�ln�d* + R� − ln�d + R��
,

Fd/lz = �L11�SI
2�ln�d + R� − ln�d* + R��

+ SN
2 �ln�d* + R� − ln�R��� ,

Fi/lz = 2���d* + R��SI − SN�2, �29�

where lz is the extent of the cylinder in the z direction. Note,
for consistency with the results presented in Sec. IV, that in
the limit of large radius, the above expressions for Ft, Fe, and
Fi, scaled by the surface area of the inner sphere, asymptote
to the corresponding terms in the equivalent planar geometry
expression �Eq. �22��. In the limit of large radius the expres-
sion for the elastic energy Fd tends to zero, as expected for
the planar case.

However, it is not possible to progress analytically with
this set of equations. Resorting to numerical calculations,
therefore, we plot, in Fig. 4, the free energy of this
system per unit length in the z direction. Here, we have
used the same temperature, cell thickness, and material pa-
rameter values as those employed in our planar-geometry
calculations with, additionally, �=1.0�10−5 N m−1 and
L11=1.0�10−11 N which are typical values for the surface
tension �2� and elastic constants �19�. As before, in the planar
case, the construction of Fig. 4 is essentially the same. From
the free energy in Eq. �29� we find the equilibrium equations
for SI and SN and by specifying a numerical value of d* and
numerically solving these equations we find the energy of
that state from Eq. �29�. We continue this process for a range
of d* and R values, creating the plot in Fig. 4.

These results show that for a large inner cylinder radius
the behavior is similar to that found for the planar case �Fig.
4�a��: a nematic region will either expand to fill the region if
d* is greater than some critical value or the I layer will ex-
pand to fill the region if d* is smaller than the critical value.
However, when the radius R of the inner sphere is reduced, a
significant range of applied voltages exists for which the free
energy has a local minimum for 0�d*�d; i.e., there is a
locally stable N-I interface between the inner and outer cyl-
inders �Fig. 4�b��. Furthermore, other sets of results �not
shown here� indicate that if the radius of the outer conductor
and the applied voltage are increased sufficiently, it is pos-
sible to achieve thick N layers. It must be emphasized, how-
ever, that such coexistence only occurs over the narrow tem-
perature range for which both the N and I phases are either
stable or metastable.

B. Spherical case

If we now consider a system with spherical symmetry
consisting of an inner conductor of radius R surrounded by a
concentric outer sphere of radius R+d �Fig. 1�c��, the free
energy contributions can be expressed as

Ft =
4

3
����SI���R + d�3 − �R + d*�3� + ��SN���R + d*�3 − R3�� ,

Fe = −
2��0�N�IR�d + R��d* + R�V2

�Id
*�d + R� + �NR�d − d*�

,

Fd = 8�L11d
*SN

2 ,

Fi = 4���d* + R�2�SI − SN�2. �30�
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It is again not possible to progress analytically with this
set of equations. However, as in the cylindrical case, we may
plot the total energy as a function of d* by evaluating SI and
SN in Eqs. �30� by numerical minimization. We may also use
the simple assumption that SI=0 and SN=S+ to simplify the
total energy; as shown above, this is an extremely good ap-
proximation to the full energy expression.

Using the same parameter values as those employed in the
cylindrical case, we show, in Figs. 5�a� and 5�b�, energy plots
for a range of voltages and for R=50�10−5 m and
R=5�10−5 m, respectively. As in the cylindrical case, when
the radius R of the inner sphere is reduced sufficiently, there
is a significant range of applied voltages for which a locally
stable N-I interface develops between the inner and outer
spheres.

VI. CONCLUSIONS

Using a relatively simple model of the effect of an applied
voltage on the I to N phase transition, we have investigated
the stability of the N-I interface under the influence of vari-
ous electric field patterns. In the case of a planar geometry
system, we have found that the N-I interface cannot be sta-
bilized by the effects of dielectric inhomogeneity alone.
Here, though, we have been able to find analytic expressions
for the critical domain size, Eq. �26�, and critical voltage, Eq.
�28�, at which field-induced transitions occur. Thus, from Eq.
�26�, we see that the critical domain size dmax

* is linearly
proportional to the modulus of the applied voltage and its
temperature dependence is of the form −�T−TNI�−1/2 due to
the temperature dependence of ��S+�. Therefore, as the tem-

FIG. 4. Cylindrical geometry: the total free energy as a function of domain size d* for �a� inner cylinder radius R=10�10−5 m and
voltages V=8, 8.25, 8.5, 8.75 V and �b� inner cylinder radius R=3�10−5 m and voltages V=7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25 V. At small
R, the free energy has a minimum within the cell, implying a coexistence or banding of the nematic and isotropic phases.

FIG. 5. Spherical geometry: the total free energy as a function of domain size d* for �a� inner sphere radius R=50�10−5 m and voltages
V=7.75, 8, 8.25, 8.5, 8.75, 9 V and �b� inner sphere radius R=5�10−5 m and voltages V=7.25, 7.75, 8.25, 8.75, 9.25, 9.75 V. At small R,
the free energy has a minimum within the cell, implying a coexistence or banding of the nematic and isotropic phases.
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perature decreases towards TNI the critical domain size de-
creases, eventually leading to a homogeneous transition
where domains are not necessary to seed the transition. From
the minimum and maximum critical voltages in Eq. �28� we
find that Vmin /Vmax=�I /�N so that for a weakly anisotropic
materials, where �N��I, the range of voltages which induce
a domain-driven phase transition will be small.

For the cylindrical and spherical geometries we have
found that it is possible, for a range of cell dimensions and
voltages, to generate a locally stable N-I interface in the
interior of the liquid-crystal region. Furthermore, we have
shown that, by changing the applied voltage, the interface
position can be controlled and so moved to any point in the
cell. The free energy versus interface position plots show that
a cell with d*=d or a cell with d*=0 may not be the lowest-
energy state and that a banded nematic/paranematic cell is
preferred. These two possibilities �d*=d ,d*=0� do not quite
represent cells which are completely filled with nematic and
paranematic, respectively, because of the inclusion of the in-
terface energy �which remains even if d*=d or d*=0�. How-
ever, even when we neglect this energy term in order to
compare a banded cell with a fully nematic or fully isotropic
cell, we find that the banded cell is still of lower energy for
a range of voltages. Therefore a nematic layer should spon-
taneously grow from the inner substrate even if there is no
preference for that substrate to induce nematic order.

One limiting factor in drawing such conclusions is that
this effect may be restricted to a small temperature range
around TNI. Other influences such as impurities in the nem-
atic liquid crystal, surface inhomogeneities, and thermal fluc-

tuations may also play a role in destabilizing the nematic and
paranematic coexistence. Such effects are hard to quantify,
and experimental measurement is clearly needed to confirm
these results.

This result suggests a generally applicable route to stabi-
lizing N-I interfaces which has no recourse to, e.g., material-
specific surface treatments. Such direct access to the N-I in-
terface should enable assessment of the various molecular
theories relating to this area. Furthermore, there is interest in
being able to continuously vary liquid-crystal film thick-
nesses in the submicron range. This is particularly of interest
in hybrid aligned nematic films where elastic theory predicts
qualitative changes in the Q-tensor profile as the film thick-
ness is reduced �21� but experiment and simulation suggest
structural effects neglected by continuum methods �22,23�.

Our findings may also have some technological applica-
tion. Most obviously, our predictions for the cylindrical ge-
ometry lead directly to the concept of active optical fibers in
which the radius of the refractive index step can be varied in
time and/or distance along the fiber. As noted above, for
single-component molecular mesogens, this controllable di-
electric interface has little associated compositional change,
making material transport a secondary consideration. Alter-
natively, liquid-crystal mixtures or even polymeric-mesogen
systems could be used, so as to increase the available thermal
range of N-I coexistence at the cost of significantly slower
switching times.
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